Synthesis of Pyridine Complexes of Zirconium(II1) Chloride and the Apparent Oxidation to Zirconium(1V) by a Nitrile

Although zirconium(II1) halides have **been** known since 1923,' it was not until the late 1960s that the first ligand adducts were prepared by Fowles and co-workers? These early complexes were prepared by reacting zirconium(II1) halides (synthesized by high-temperature synthetic procedures) with nitrogen-based ligands such as pyridine and acetonitrile **(eqs** 1 and 2). Dinuclear gh zirconium(III) halides have been known since
until the late 1960s that the first ligand addu-
by Fowles and co-workers.² These early comple:
by reacting zirconium(III) halides (syntheserature synthetic procedures) wi

$$
ZrX_3 + \text{excess pyridine} \xrightarrow{3-5 \text{ days}} ZrX_3(\text{py})_2
$$
 (1)

$$
2ZrX_3 + \text{excess } CH_3CN \xrightarrow{3-5 \text{ days}} Zr_2X_6(CH_3CN), \quad (2)
$$

structures with the pyridine or acetonitrile ligands bound through nitrogen were proposed for the compounds **on** the basis of their low magnetic moments, chemical composition, and other spectroscopic data, but **no** definitive structural characterization was reported. For the acetonitrile complexes a structure with the linkage shown in I was also discussed.

$$
\begin{array}{c}\n\text{Me } X \\
\downarrow \\
\text{Zr}\longrightarrow\text{C}\longrightarrow\text{Zr} \\
\text{I}\n\end{array}
$$

In 1981 Wengrovius and Schrock reported a general synthesis for phosphine complexes of zirconium(II1) involving the reduction of ZrC14 with sodium amalgam in the presence of phosphine *(eq* 3).3 This procedure produced the first structurally characterized

 $2ZrCl_4 + 2Na/Hg + 4PR_3 \rightarrow [ZrCl_3(PR_3)_2]_2 + 2NaCl$ (3)

ligand adduct of zirconium(III), $[ZrCl_3(P-n-Bu_3)_2]_2$, which has an edge-shared bioctahedral structure and a long (3.18 **A)** Zr-Zr bond distance? Several other structurally characterized phosphine complexes have since been reported. 4.5

We are interested in using well-characterized complexes of zirconium(II1) halides, in particular Fowles-type pyridine complexes, as starting materials for the preparation of zirconium(II1) compounds. As part of these studies, we report herein the straightforward synthesis of pyridine complexes of zirconium(II1) chloride, an X-ray structure determination of one derivative, and our initial observations concerning their reactivity, including the apparent oxidation of Zr(II1) by an organic nitrile.

Initial attempts to prepare $ZrCl₃(py)_n$ complexes by reducing $ZrCl₄$ in the presence of pyridine (cf. eq 3) led to intractable mixtures. We therefore tried a less direct synthesis that involved the use of preformed zirconium(II1) halide complexes. The addition of 4 equiv of pyridine, 4-tert-butylpyridine, or 4-(1-butylpentyl)pyridine to a slurry of $[ZrCl_3(P-n-Bu_3)_2]_2$ in hexanes gives an immediate reaction and precipitation of a deep red microcrystalline solid. Filtration of the solid and exhaustive washing with hexanes produces material that analyzes as

- J. Chem. 1964, 42, 1495.
J. Chem. 1964, 42, 1495.
Fowles, G. W. A.; Russ, B. J.; Willey, G. R. J. Chem. Soc., Chem.
Commun. 1967, 646. Fowles, G. W. A.; Willey, G. R. J. Chem. Soc.
A 1968, 1435. Larsen, E. M.; Henzler, T.
- Wengrovius, J. H.; Schrock, R. R.; Day, C. *S. Inorg. Chem.* 1981, 20, 1844. Wengrovius, J. H.; Schrock, R. R. J. *Orgunomet. Chem.* 1981, 205, 3 19.
- Cotton, F. A.; Diebold, M. P.; Kibala, **P.** A. *Inorg. Chem.* 1988, 27, 799. (4) Edwards, **P.** G.; Howard, J. A. K.; Parry, J. *S.;* AI-Soudani, A.-R. J. *Chem. SOC., Chem. Commun.* 1991, 1385.
- (5) There are some related Cp complexes; **see:** Chiang, M. Y.; Gambarotta, **S.;** Bolhuis, F. Organometallics 1988, 7, 1864 and references therein.

Figure 1. Plot of $[ZrCl_3(4-(1-butylpentyl)pyridine)_2]_2$, showing the atom-numbering scheme (30% probability ellipsoids). The heavily disordered aliphatic chains on the pyridines have been omitted.

Figure 2. Plot of $Zr_2Cl_6(py)_3(t-BuCN)$, showing the atom-numbering scheme for the core atoms (30% probability ellipsoids).

 $ZrCl₃(py-R)₂$. On the basis of this formulation, the yields for eq 4 are nearly quantitative.6

scheme for the core atoms (30% probability ellipsoids).
\nZrCl₃(py-R)₂. On the basis of this formulation, the yields for eq
\n4 are nearly quantitative.⁶
\n
$$
[ZrCl3(P-n-Bu3)2]2 + 4py-R $\frac{\text{hexanes}}{\frac{1}{1 \text{ h}}}$
\n
$$
[ZrCl3(py-R)]2 + 4P-n-Bu3 (4)
$$
\n
$$
R = H, 4-t-Bu, 4-(1-butylpentyl)
$$
$$

The isolation of pyridine adducts via eq 4 prompted us to attempt again a preparation directly from ZrC14 by reduction with Na/Hg. Despite repeated attempts under various conditions, however, only the 4-(1-butylpentyl)pyridine derivative, the most soluble of the three, could be isolated cleanly (yield: 31%) by this procedure.

The isolated complexes are air sensitive, react with solvents such as thf and CH_2Cl_2 , and are only sparingly soluble in benzene. ¹H NMR spectra recorded for benzene- d_6 solutions of the 4-tertbutylpyridine and 4-(1-butylpentyl)pyridine derivatives are sharp and unshifted, consistent with a diamagnetic M-M-bonded compound, and reveal only one kind of pyridine. An X-ray structure determination for the **4-(** 1-butylpenty1)pyridine derivative confirms the dimer formulation (Figure 1).⁷ The edge-shared bioctahedral of the $[ZrCl_3(PR_3)_2]_2$ complexes.^{3,4} geometry and $Zr-Zr$ distance (3.138 (3) \AA) are similar to those

Ruff, O.; Wallstein, R. Z. Anorg. Allg. Chem. 1923, 128, 96. Young, R. C. J. Am. Chem. Soc. 1931, 53, 2148. Larsen, E. M.; Leddy, J. J.
J. Am. Chem. Soc. 1956, 78, 5983. Watt, G. W.; Baker, W. A., Jr. J. Inorg. Nucl. Chem. *Inorg. Nucl. Chem.* 1964,26,2087. Swaroop, B.; Flengas, **S.** N. *Cun.*

⁽⁶⁾ The yields for the pyridine, 4 -tert-butylpyridine, and 4 - $(1$ -butylpenty1)pyridine derivatives were 95, 92, and 83%, respectively. Anal. Calcd for C₂₀H₂₀Cl₆N₄Zr₂: C, 33.76; H, 2.83; N, 7.87. Found: C, 33.57; H, 2.79; N, 7.22. Calcd for C₃₆H₃₂Cl₆N₄Zr₂: C, 46.20; H, 5.60; N, 5.99. Found: C, 46.29; H, 5.28; N, 5.37. Calcd for C₅₆H₉₂N₄ C, 55.29; H, 7.62; N, 4.60. Found: C, 55.23; H, 7.61; N, 4.23.

⁽⁷⁾ Crystal data for C₅₆H₉₂N₄Cl₆Zr₂ at -55 (1) °C: dark red plate from
benzene/hexanes, 0.55 × 0.45 × 0.12 mm, monoclinic, space group
 P_21/n , $a = 13.869$ (8) Å, $b = 14.835$ (5) Å, $c = 16.692$ (9) Å, $\beta = 111.7$ using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) in the θ -2 θ scan mode. Lorentz and polarization corrections were applied to the data. A total of 3942 reflections were collected in the range 4° $\leq 2\theta \leq 45^{\circ}$; 1890 unique reflections with $I > 3\sigma(I)$ were used in the structure solution. The molecule is situated about an inversion center, and the butylpentyl groups are severely disordered. *R(F)* = 0.074; $R_{\rm w}(F) = 0.056$.

The intriguing structure **(I)** proposed by Fowles and co-workers for their $Zr(III)$ acetonitrile complexes² prompted us to examine reactions of the $[ZrCl_3(py-R_2)]_2$ compounds with trimethylacetonitrile, which we assumed would give soluble and therefore easily characterizable compounds. Thus, the reaction of 1 equiv of trimethylacetonitrile with $[ZrCl_3(py)_2]_2$ in benzene (3 h) gives an orange solution and precipitate. Workup of the reaction, which includes removal of the volatiles under reduced pressure and a hexanes wash of the residue, produces analytically pure Zr_2Cl_6 - $(py)_{3}(t-BuCN)$ as an orange solid in 92% yield.

An X-ray structure determination for $Zr_2Cl_6(py)$, (t-BuCN) revealed that the nitrile is π bound to one Zr center (Zr(2)) and σ coordinated via nitrogen to the other (Figure 2).⁹ The $Zr-Zr$ distance $(3.554 \text{ (1) } \text{\AA})$ is 0.4 Å longer than in $[ZrCl_3(4-(1-bu$ tylpentyl)pyridine), $]_2$, suggesting that the Zr-Zr bond has been cleaved.¹⁰ The $Zr(2)-C(1)$ distance (2.208 (7) Å) is somewhat short compared to Zr -alkyl bond distances (e.g., $Zr-C = 2.262$ (11) Å in $ZrMe(N(SiMe₃))₃$.¹¹ Also, the $Zr(2)-N(1)$ and Zr(1)-N(1) distances (2.245 *(5)* and 2.1 12 (6) **A)** are significantly shorter than the $Zr-N(py)$ bond distances (average 2.391 (11) Å) and $Zr(1)-N(1)$ is nearly as short as the $Zr-N$ distance in $ZrMe(N(SiMe₃)₂)$ ₃ (2.080 (5) Å),¹¹ a molecule in which there is undoubtedly some degree of Zr-N multiple bonding.

The coordinated nitrile C-N bond distance (1.255 (9) **A)** is lengthened in comparison to the distance in a free nitrile (1.16 Å), and the Me₃C-C-N angle $(127.4 \cdot (7)^{\circ})$ is close to the value expected for sp² hybridization. This indicates there is significant population of the nitrile π^* orbitals. Raman data also support this notion: the C-N stretch has **been** assigned to a band at 1612 (2237 cm^{-1}) and close to the value observed for the C=N bonds in $R_2C=NR$ compounds.¹³ Thus, the aggregate of structure and spectroscopic properties suggests it is reasonable to count the nitrile as a formal dianionic ligand and to view the reaction to form $Zr_2Cl_6(py)_3(t-BuCN)$ as an oxidative addition of t-BuCN to the Zr-Zr bond in $[ZrCl₃(py)₂]_2$. cm^{-1} , ¹² which is significantly reduced from the value for free nitrile

In conclusion, we have presented a convenient synthesis of $[ZrCl₃(py-R)₂]$ ₂ complexes and the first definitive structural characterization for this type of compound. We have also shown that t-BuCN adds to $[ZrCl_3(py)_2]_2$ in an apparent oxidative addition yielding a nitrile ligand coordinated in a σ , π fashion. Although several examples of π -bound nitriles to single metal centers are known,¹⁴ a σ,π coordination mode like that in

- (8) ¹H NMR (CD₂Cl₂): δ 9.25 (d, 2, α -H, C₃H₃N), 9.13 (br, 2, α -H, C₃H₃N), 8.98 (d, 2, α -H, C₅H₃N), 7.94 (m, 3, γ -H, C₅H₃N), 7.43 (m, 6, β -H, C₃H₃N), 1.25 (s, 9, Me₃CCN). ¹³C **257.4 (Me₃CCN), 152.9 (α-C, C₃H₃N), 151.7 (br, α-C, C₃H₃N), 151.4** (a-C. CsHSN), **140.6** (br, y-C, CsHsN), **140.4** (yC, CsHsN), **140.1** (*y*-C, C₃H₅N), 125.5 (*β*-C, C₃H₅N), 125.2 (*β*-C, C₃H₅N), 125.1 (*β*-C, C₅H₅N), 46.5 (Me₃CCN), 28.2 (*Me*₃CCN). Anal. Calcd for C&24N4CbZr2:'C, **j3.57; H, 3.38; N, 7.83.** Found: C, **33.39;** H, **3.39;** N, **7.62.**
- (9) Crystal data for $C_{20}H_{24}N_{4}Cl_{6}Zr_{2}$ at -55 (1) °C: orange-red block from cold $(-40 °C) CH_{2}Cl_{2}$, $0.70 \times 0.45 \times 0.40$ mm, orthorhombic, space group $Pbca$, $a = 13.980$ (7) Å, $b = 13.743$ (9) Å, $c = 36.843$ (18) Å, $Z = 8$, $d_{\text{cal}} = 1.66$ g cm⁻³, and $\mu = 13.6$ cm⁻¹. X-ray diffraction data were collected on a Nicolet R3m/V diffractometer using the *w* scan mode. Lorentz and polarization corrections and an empirical absorption correction based on ψ scans of 10 reflections having χ values between 70 and 90° were applied to the data. A total of 4128 reflections were collected in the range 4° < 2θ < 42° , and 2823 unique reflections with $I > 3\sigma(I)$ were used in the structure solution. $R(F) = 0.039$; $R_w(F) = 0.035$.
- **(IO)** For a different viewpoint on Zr-Zr super long bonds, see: Rohmer, M.-M.; Benard, M. *Organometallics* **1991,** *10,* **157. (1 1)** Bradley, D. C.; Chudzynska, H.; Backer-Dirks, J. D. J.; Hursthouse,
- M. B.; Ibrahim, **A.** A.; Motevalli, M.; Sullivan, A. C. *Polyhedron* **1990,** 9, **1423.**
- **(12)** The **1612-cm-'** band was insensitive to substitution of pyridine by pyridine- d_5 . The Raman data were obtained via backscattering for a spinning KCI pellet under a N₂ atmosphere. See: Czernuszewicz, R. *Appl. Spectrosc.* **1986, 40, 571.**
- **(1 3)** Colthup, N. B.; Daly, L. H.; Wiberley, S. E. *Inrroductions to Infrared and Raman Spectroscopy,* 3rd ed.; Academic: New York, **1990;** pp **344-347.**
- **(14)** Barrera, **J.;** Sabat, **M.;** Harman, W. D. J. Am. *Chem. SOC.* **1991,** *113,* **8178** and references therein.

 $Zr_2Cl_6(py)_3(t-BuCN)$ appears to be rare.¹⁵ Additional reactivity studies are in progress.

Acknowledgment is made to the Petroleum Research Fund, administered by the American Chemical Society, and the Robert A. Welch Foundation for the support of this research. D.M.H. $13C$ spectrum, Professor Roman Czernuszewicz for the Raman measurements, and J. D. Korp for the X-ray analysis.

Supplementary Material Available: Tables **of** crystal data, atomic coordinates, and equivalent isotropic displacement parameters for $[ZrCl₃(4-(1-butyl)pyridine)₂]$ ₂ and $Zr₂Cl₆(py)₃(t-BuCN)$ (4 pages). Ordering information is given on any current masthead page.

Received February 13, 1992

Reversible Cleavage of the Cr-Cr Multiple Bond in [(TAA)Cr], (TAA = **Tetramethyldibenzotetraaza[14Jannulene)**

Until the recent discovery that a dichromium moiety with a very short Cr-Cr distance may exist in $[(TAA)Cr]_2$ (TAA = tetramethyldibenzotetraaza[14lannulene) in the absence of any bridging interaction,¹ extremely short Cr-Cr contacts had been found in a particular class of compounds containing bridging three-center chelating ligands² and in a few organometallic dimers with bridging carbon donor atoms.³ The extremely short M-M distances and the magnetic properties of the complexes initially suggested that a strong M-M multiple bond⁴ (thought to be quadruple) was the thermodynamic driving force for the dimer formation. However, more recent experimental⁵ and theoretical⁶ work has established that Cr-Cr quadruple) bonds are para-

- **(2)** (a) Cotton, F. **A.;** Walton, R. A. *Multiple Bonds Between Metal Atoms;* J. Wiley & Sons: New York, **1982** and references cited therein. (b) Cotton, F. A.; Walton, R. A. Metal-Metal Multiple Bonds in Dinuclear Clusters. *Srrucf. Bonding (Berlin)* **1985,62, 1.** (c) Cotton, F. **A.;** Feng, X.; Kibala, P. A.; Matusz, M. J. Am. *Chem. Soc.* **1988,** *ZIO,* **2807** and references cited therein. (d) Cotton, F. A.; Koch, *S.;* Millar, M. *Inorg. Chem.* **1978, 17, 2084.** (e) Cotton, **F. A,;** Koch, *S. Inorg. Chem.* **1978, 17, 2021. (f)** Bino, **A.;** Cotton, F. A,; Khaim, W. *Inorg. Chem.* **1979,** *18,* **3566.** (g) Cotton, F. A.; Koch, *S.;* Millar, M. *Inorg. Chem.* **1978,**
- 17, 2087.

(3) (a) Hursthouse, M. B.; Malik, K. M. A.; Sales, K. D. J. Chem. Soc.,

Dalton Trans. 1978, 1314. (b) Koschmieder, S. U.; McGillan, B. S.;

McDermott, G.; Arnold, J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. **1971, 27, 59.**
- **(4)** Cotton, F. A. *Ace. Chem. Res.* **1978,** *I!,* **225.**
- **(5)** (a) Larkworthy, L. F.; Tabatabai, J. M. *Inorg. Nucl. Chem. Lerr.* **1980,** (a) Zarawath, E., P., P., Zeiss, H. H. J. Organomet. Chem. 1973,
16, 427. (b) Sneeden, R. P.; Zeiss, H. H. J. Organomet. Chem. 1973,
47, 125. (c) Salt, J. E.; Wilkinson, G.; Motevalli, M.; Hursthouse, M.
B. J. Chem. Soc.,
- **(6)** Hall, M. B. *Polyhedron* **1987, 6, 679** and references cited therein.

⁽¹⁵⁾ (a) We know of only one other example for group IV metals, **[Ti(2,6** diphenylphenoxide)₂(PhCN)]₂: Rothwell, I. Private communication. For a related late transition metal example, see: Bassi, I. W.; Benedicenti, C.; Calcaterra, M.; Intrito, R.; Rucci, G.; Santini, C. J. *Organomet. Chem.* **1978,144,255.** For a trinuclear example, **see:** Andrews, M. A,; Knobler, C. B.; Kaesz, H. D. J. Am. *Chem.* **Soc. 1979,** *101,* **7260.** (b) While this paper was under review, another low-valent example appeared: Alonso, F. J. G.; Sanz, M. G.; Riera, V. *Organometallics* **1992,** *11,* **801.**

⁽I) Edema, J. J. H.; Gambarotta, s.; van der Sluis, P.; Smeets, W. J. J.; Spek, A. L. *Inorg. Chem.* **1989, 28, 3782.**